

Evolutionary Neural Network Prediction for Software Reliability Modeling

Sultan Aljahdali Khalid A. Buragga
College of Computer Sciences College of Computer Sciences
Taif University, Saudi Arabia King Faisal University, Saudi Arabia

 aljahdali@pca.gov.sa kburagga@kfu.edu.sa

Abstract: Software Reliability is a key concern of many users
and developers of softwares. Demand for high software reliability
requires robust modeling techniques for software quality
prediction. This paper presents a new approach to software
reliability assessment by using neural network.
The neural network model has been applied to three different
applications and normalized root mean of the square of error as
an evaluation criterion. Results show that the neural network
model adopted has good predictive capability.

Keywords: Neural Network, Software Quality, Software
Reliability, and Auto Regression

1. Introduction

Software reliability is becoming more and more
important in software industry various techniques are
required to discover faults in the development of
software. Software reliability can defined as the
probability of a software system to perform its
specified functions correctly over a long period of time
or for different input set under the usage environments
similar to that of its target customer [15]. However; as
reliability of software is measured in terms of failure it
is impossible to measure reliability before the software
is developed completely, software reliability is the most
extensively studied quality among all the quality
attributes [10].

In the past few years a number of software reliability
assessment models have been developed to solve
software reliability models. These software models
have been developed in response to the urgent need
for software engineers, system engineers and managers
to quantify the concept of software quality prediction.
Software reliability models were useful in cases like
managing reliability, managing project changes and
monitoring test programs. Some of the models that
have been developed for software quality prediction
are: exponential order statistical model, logic regression
Case based reasoning, Artificial Neural Networks, and
Optimal Set reduction. The main objective of these
models are to help predict which modules are error
prone which in turn can help developer to focus on
many aspects of maintenance cycle [2].

In this paper we propose a new approach towards
software reliability assessment using neural networks
and normalized root of mean of the square of error
(NRMSE) criterion as an evaluation criterion. The rest
of the paper is organized as follows: After a brief
examination of the existing techniques for software
reliability using prediction using auto regression model,
in section 2.1, a new approach using neural network
for software reliability section 2.2, then we will discuss
about data set in section 3, in section 4 we cover the
architecture of the neural networks used for modeling
software reliability. Section 5 we cover the experiment
setup by observation of data for test/debug for one of
the program for real-time control, in addition to
evaluation criterion for each developed model to
measure its performance.
Section 6 presents the results of the prediction of
software reliability model using auto regression and the
prediction of the software reliability model, using
neural networks in the training and in the testing cases.
Finally a summary of the work done and future
research directions for the proposed strategy are
discussed in section 7.

2.1 Prediction Using Auto Regression Model

Auto Regression models are the most popular method
for building models and are used to calibrate almost all
of the models. Linear least square regression analysis is
still the most common technique used, as observed in
the literature [1]. Much of the appeal of this technique
lies with its simplicity and also its easy accessibility
from many of the popular statistical packages.

One of the most famous regression models is the
Auto-Regressive model. This model has been used in
many applications. The auto-regressive model can be
described in the following form:

∑
=

−+=
n

i
ii kyky

1
0)()(τθθ

y(k- iτ) is the past system output and (k= 1,2,..n). θi

is the tuning parameter for the auto-regressive model;
n is referred to as the “order” of the model. This
model can work as a reliability growth model if the
model variables are redefined as follows:

9

)()(
1

0 ∑
=

−+=
n

i
ii kCkC τθθ

C(k- iτ) is defined as the previous observed number of
faults (k=1,2,...,n). This, way the auto-regressive
regression model can be used in this research.

2.2 Neural Network for Software Reliability

The most popular training algorithm for feed-forward
neural networks is the back-propagation algorithm; the
back-propagation learning algorithm provides a way to
train multi-layered feed-forward neural networks. In
this research, we use the back-propagation learning
algorithm to explore the development of a suitable
model for software reliability prediction problem.
Neural Networks, consists of a number of elements
called neurons. These neurons are grouped together to
form a layer. Each neuron has a number of inputs and
a single output. Each input has an assigned factor or
parameter called the weight. A neuron works in the
following way: the input signal to each neuron is first
multiplied by the corresponding weight; then the result
from the multiplication is summed and passes through
a transfer function. The neuron output will not be
activated unless the summation exceeds certain
threshold. This operation can be represented by the
Following:

|)(|
1
∑ −
=

=
m

i
j jiijfO ow θ

Where Oi is the output of the unit i, Oj is the output of
the unit j, f(..) is a transfer function, ijw is the weight

of the link between i and j, and θj is the threshold of
the neuron j. m is the number of neurons in the input
layer, and neurons in a neural network are arranged
into layers. The structure of the feed-forward neural
network in presented in the following figure: 1

3. Data set

The DACS Services at the Department of Defense
(D.O.D.) Software Information Clearinghouse
provides an authoritative source for the state of the art
software information, supplying technical support for
the software community. John Musa of Bell Telephone
Laboratories compiled a software reliability database.
His objective was to collect failure interval data to
assist software managers in monitoring test status,
predicting schedules and to assist software researchers
in validating software reliability models. These models
are applied in the discipline of Software Reliability
Engineering. The dataset consists of software failure
data on 16 projects. Careful controls were employed
during data collection to ensure that the data would be
of high quality. The data was collected throughout the
mid 1970s. It represents projects from a variety of
applications including real time command and control,
word processing, commercial, and military
applications.

4. Neural Networks Structure

The architecture of the neural networks used for
modeling software reliability problem in this research
is a three-layer feed-forward neural network. It consists
of an input layer, one hidden layer, and an output layer.
The input layer contains a number of neurons equal to
the number of delayed measurements allowed to build
neural networks model

In our case, there are four inputs to the network, They
are C(k-1), C(k-2), C(k-3), C(k-4).
 C (k-1) is the observed faults one-day before the
current day. The hidden layer consists of linear hidden
units. The output layer consists of one output neuron
producing the estimated value of the fault. There is no
direct connection between the network input and
output. Connections occur only through the hidden
layer. The hidden units are fully connected to both the
input and output. The hidden and output layer nodes
have linear activation functions.

5. Experiment Setup

5.1. Test/Debug data for Real-Time Control

Observation of data for test/debug of a program for
real-time control was used. The size of the program is
870 kilo-steps of FORTRAN and a middle level
language. Since the test data is recorded day by day, the
test operations performed in a day are regarded to be a
test instance.

Input
layer

Hidden
layer

Output
layer

Figure 1: Feed-forward neural networks structure

i j

4

2

3

1

10

5.2. Evaluation Criteria

We used an evaluation criterion for each developed
model to measure its performance. The criterion of
evaluation (i.e. performance) was defined as the
Normalized Root Mean of the Square Error
(NRMSE). The equation, which governs the NRMSE,
is as follows:

∑

∑

=

=

∧

−

− n

k

n

k

ky

kyky

n
1

2

1

2

))((

))()((

1
1

Where)(kC is the observed faults and)(kC
∧

 is the
predicted faults for the given model structure. To
explore the possibility of using neural networks for
software reliability prediction, we developed some
experiments to show the advantages of neural
networks.

6. Experimental Results

 6.1. Prediction Using an Auto Regression

We developed an Auto Regression model of order four
to predict the software reliability for test/debug data of
a program for real-time control. The model structure is
given by the following equation:

)4()3()2()1()(43210 −+−+−+−+=
∧

kCakCakCakCaakC

Where)(kC is the observed fault and)(kC
∧

is the
predicted fault, an auto regression has been used to
identify the values of the parameters ia (k=1,2,3,4). A
data set represents 70% of the collected data that was
used in the training phase. To verify the results of the
parameter estimation process, the model has been
tested with whole data set that represents 100% of the
collected data for various projects. The results of the
parameter estimation procedure are given in Table 1.
The NRMSE of the testing, in regression model case
also, is given in Table 2.

6.2. Prediction Using Neural Networks

In the following section, we will show the prediction
of the software reliability model, using neural networks
in the training and in the testing cases.

6.2.1. Training and Testing

The neural networks were trained with a different set
of initial weights until the best sets of weights were

calculated and the NRMSE was reduced to a small
value. We used the neural networks weights developed
from the training case to test the neural networks
performance. The neural networks model has been
tested with the rest of the collected data, which
represents 100% of the collected data set. The
NRMSE of the testing in neural networks case is given
in Table 2. In Figures 1 to 3 we are showing the
training and testing results for various projects using
regression model, also, in Figure 4 to 6 we are showing
the training and testing result for the same projects
using neural networks.

7. Conclusions and Future Work

We have shown that the neural networks can be used
for building software reliability growth models. Neural
networks were able to provide models with smaller
NRMSE than the regression model in all considered
cases. If a regression model with a higher order had
been considered then probably a smaller NRMSE
would have been obtained. However, the number of
the regression model parameters will be increased. This
will require more observations for providing a reliable
estimate of the parameters. The entire system of
software reliability research is considered useful for
software development and testing industry. At the
present we are investigating the use of genetic
programming to solve the software reliability problem.

Project
Name

Military

Real Time
Control

Operating
System

a0 3.7427 2.3977 0.4034
a1 1.0087 0.8898 1.0621
a2 -0.0181 0.0730 -0.0841
a3 -0.2301 -0.1549 0.2673
a4 0.2249 0.1612 -0.2392

Table 1: Results for the Estimation of a’s using Least Square
Estimation.

Project
Name

Military

Real Time
Control

Operating
System

Number of
Faults 101 136 277

Training
Data 71 96 194

Testing
Data 101 136 277

Regression
Model 3.1434 1.7086 1.0659

Neural
Networks 1.0755 0.5644 0.7714

Table 2: A Comparison between Regression model order 4
and neural networks model in testing case (NRMSE).

11

Figure 1: Actual and Estimated Faults Prediction error using
LSE: Real-Time and Control Applications

Figure 2: Actual and Estimated Faults prediction error using
LSE: Military Applications.

Figure 6: Actual and Estimated Faults prediction error using
NNs: Operating Systems Applications.

Figure 3: Actual and Estimated Faults prediction error using
LSE: Operating Systems Applications.

Figure 4: Actual and Estimated Faults prediction error using
NNs: Real- Time and Control Applications

Figure 5: Actual and Estimated Faults prediction error using
NNs: Military Applications.

12

Acknowledgment:

Dr. Aljahdali, and Dr. Buragga, would like to thank
Taif University, and King Faisal University for their
support during this research.

8. Bibliography

1. Aljahdali, S. “Prediction of Software Reliability

Using Neural Network and Fuzzy logic”, Ph.D.
Dissertation presented to the faculty of College of
Graduate Studies., Dept. of the Software
Engineering and Info. System, George Mason
University, Fairfax, Virginia, U.S.A, May 2003.

2. Aljahdali, S., Sheta, A., and Habib, M. "Software

Reliability Analysis Using Parametric and Non-
Parametric Methods”, Proceedings of the ISCA
18th International Conference on Computers and
their Application, March 26-28, 2003, pp. 63-66.

3. Aljahdali, S., Sheta, A., and Rine, D., “Predicting

Accumulated Faults in Software Using Radial Basis
Function Network”, Proceedings of the ISCA 17th
International Conference on Computers and their
Application, 4-6, April 2002, pp. 26-29.

4. Aljahdali, S., Sheta, A., and Rine, D., “Prediction

of Software Reliability: A Comparison between
regression and neural network non-parametric
Models”, Proceeding of the IEEE/ACS
Conference, 25-29, June 2001,pp.470-471.

5. Ganesan, K , Khoshgoftaar ,T.M., Allen, E.B. ,“

Case based Software quality prediction”,
International Journal of Software Engineeering
and Knowledge Engineering, 1999, 9(6),
Forthcoming.

6. Khoshgoftaar , T.M.,Allen, E.B, Jones, W.D.,

Hudepohl, J.P., “ Which Software modules have
faults that will be discovered by Customers?”,
Journal of Software Maintenance: Research and
Practice, , Jan 1996,11(1):1-18.

7. Khoshgoftaar, T.M. , Pandya A.S., Lanning, D.L.

,“Application of Neural Networks for Predicting
Faults”, Annals of Software Engineering,
1995,1:141-154.

8. Khoshgoftaar, T.M., Allen, E.B., “Logistic

Regression Modeling of Software Quality”,
International Journal of Reliability, Quality and
Safety Engineering, Dec. 1999, 6(4), Forthcoming.

9. Liang T., Afzel, N. “Evolutionary neural network
modeling for software cumulative failure time

prediction ”, Journal of Reliability Engineering
and System Safety, 2005, Vol.87, pp. 45–51.

10. Liang T., Afzel, N. “On-line prediction of

software reliability using an evolutionary”
connectionist model”, Journal of Systems and
Software, 2005, Vol. 77, pp. 173–180.

11. Musa, D. J. “Software Reliability Engineering:

More Reliable Software Faster and Cheaper”
Author house, Indiana, 2004.

12. Srinivasan, K., and Fisher, D., “Machine learning

approaches to estimating software development
effort”, IEEE Trans, Software Engineering, 21
(1995) pp.126-137.

13. Stewart, W., “Collinearity and least squares

regression”, Statistical Science, 2(1987) pp. 68-100.

14. Tian, J, “ Better Reliability Assessment and

Prediction through Data Clustering”, IEEE
Transactions on Software Engineering, October
2002, Vol. 28, No. 10.

15. Tian, J, “ Software Quality Engineering”, John

Wiley and Sons Inc. 2005.

13

