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Abstract: Software Reliability is a key concern of many users 
and developers of softwares. Demand for high software reliability 
requires robust modeling techniques for software quality 
prediction. This paper presents a new approach to software 
reliability assessment by using neural network.  
The neural network model has been applied to three different 
applications and normalized root mean of the square of error as 
an evaluation criterion. Results show that the neural network 
model adopted has good predictive capability. 
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1. Introduction  
 
Software reliability is becoming more and more 
important in software industry various techniques are 
required to discover faults in the development of 
software. Software reliability can defined as the 
probability of a software system to perform its 
specified functions correctly over a long period of time 
or for different input set under the usage environments 
similar to that of its target customer [15]. However; as 
reliability of software is measured in terms of failure it 
is impossible to measure reliability before the software 
is developed completely, software reliability is the most 
extensively studied quality among all the quality 
attributes [10]. 
 
In the past few years a number of software reliability 
assessment models have been developed to solve 
software reliability models. These software models 
have been developed in response to the urgent need 
for software engineers, system engineers and managers 
to quantify the concept of software quality prediction. 
Software reliability models were useful in cases like 
managing reliability, managing project changes and 
monitoring test programs. Some of the models that 
have been developed for software quality prediction 
are: exponential order statistical model, logic regression 
Case based reasoning, Artificial Neural Networks, and 
Optimal Set reduction. The main objective of these 
models are to help predict which modules are error 
prone which in turn can help developer to focus on 
many aspects of maintenance cycle [2]. 
 

In this paper we propose a new approach towards 
software reliability assessment using neural networks 
and normalized root of mean of the square of error 
(NRMSE) criterion as an evaluation criterion. The rest 
of the paper is organized as follows: After a brief 
examination of the existing techniques for software 
reliability using prediction using auto regression model, 
in section 2.1, a new approach using neural network 
for software reliability section 2.2, then we will discuss 
about data set in section 3, in section 4 we cover the 
architecture of the neural networks used for modeling 
software reliability. Section 5 we cover the experiment 
setup by observation of data for test/debug for one of 
the program for real-time control, in addition to 
evaluation criterion for each developed model to 
measure its performance.  
Section 6 presents the results of the prediction of 
software reliability model using auto regression and the 
prediction of the software reliability model, using 
neural networks in the training and in the testing cases. 
Finally a summary of the work done and future 
research directions for the proposed strategy are 
discussed in section 7. 
 
2.1 Prediction Using Auto Regression Model 

 
Auto Regression models are the most popular method 
for building models and are used to calibrate almost all 
of the models. Linear least square regression analysis is 
still the most common technique used, as observed in 
the literature [1]. Much of the appeal of this technique 
lies with its simplicity and also its easy accessibility 
from many of the popular statistical packages. 

 
One of the most famous regression models is the 
Auto-Regressive model. This model has been used in 
many applications. The auto-regressive model can be 
described in the following form: 
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y(k- iτ ) is the past system output and (k= 1,2,..n). θi 

is the tuning parameter for the auto-regressive model; 
n is referred to as the “order” of the model. This 
model can work as a reliability growth model if the 
model variables are redefined as follows: 
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C(k- iτ ) is defined as the previous observed number of 
faults (k=1,2,...,n). This, way the auto-regressive 
regression model can be used in this research. 
 
2.2 Neural Network for Software Reliability 
 
The most popular training algorithm for feed-forward 
neural networks is the back-propagation algorithm; the 
back-propagation learning algorithm provides a way to 
train multi-layered feed-forward neural networks. In 
this research, we use the back-propagation learning 
algorithm to explore the development of a suitable 
model for software reliability prediction problem.  
Neural Networks, consists of a number of elements 
called neurons. These neurons are grouped together to 
form a layer. Each neuron has a number of inputs and 
a single output. Each input has an assigned factor or 
parameter called the weight.  A neuron works in the 
following way: the input signal to each neuron is first 
multiplied by the corresponding weight; then the result 
from the multiplication is summed and passes through 
a transfer function. The neuron output will not be 
activated unless the summation exceeds certain 
threshold. This operation can be represented by the 
Following: 
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Where Oi is the output of the unit i, Oj is the output of 
the unit j, f(..) is a transfer function, ijw  is the weight 

of the link between i and j, and  θj is the threshold of 
the neuron j. m is the number of neurons in the input 
layer, and neurons in a neural network are arranged 
into layers. The structure of the feed-forward neural 
network in presented in the following figure: 1 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

3. Data set 
 
The DACS Services at the Department of Defense 
(D.O.D.) Software Information Clearinghouse 
provides an authoritative source for the state of the art 
software information, supplying technical support for 
the software community. John Musa of Bell Telephone 
Laboratories compiled a software reliability database. 
His objective was to collect failure interval data to 
assist software managers in monitoring test status, 
predicting schedules and to assist software researchers 
in validating software reliability models. These models 
are applied in the discipline of Software Reliability 
Engineering. The dataset consists of software failure 
data on 16 projects. Careful controls were employed 
during data collection to ensure that the data would be 
of high quality. The data was collected throughout the 
mid 1970s. It represents projects from a variety of 
applications including real time command and control, 
word processing, commercial, and military 
applications.  
 

4. Neural Networks Structure  
 
The architecture of the neural networks used for 
modeling software reliability problem in this research 
is a three-layer feed-forward neural network. It consists 
of an input layer, one hidden layer, and an output layer. 
The input layer contains a number of neurons equal to 
the number of delayed measurements allowed to build  
neural networks model 

 
In our case, there are four inputs to the network, They 
are C(k-1), C(k-2), C(k-3), C(k-4). 
 C (k-1) is the observed faults one-day before the 
current day.  The hidden layer consists of linear hidden 
units. The output layer consists of one output neuron 
producing the estimated value of the fault. There is no 
direct connection between the network input and 
output. Connections occur only through the hidden 
layer. The hidden units are fully connected to both the 
input and output. The hidden and output layer nodes 
have linear activation functions. 
 
5. Experiment Setup 
 

5.1. Test/Debug data for Real-Time Control 
 
Observation of data for test/debug of a program for 
real-time control was used. The size of the program is 
870 kilo-steps of FORTRAN and a middle level 
language. Since the test data is recorded day by day, the 
test operations performed in a day are regarded to be a 
test instance. 
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Figure 1: Feed-forward neural networks structure
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5.2. Evaluation Criteria 
 
We used an evaluation criterion for each developed 
model to measure its performance. The criterion of 
evaluation (i.e. performance) was defined as the 
Normalized Root Mean of the Square Error 
(NRMSE). The equation, which governs the NRMSE, 
is as follows: 
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Where )(kC  is the observed faults and )(kC
∧

 is the 
predicted faults for the given model structure. To 
explore the possibility of using neural networks for 
software reliability prediction, we developed some 
experiments to show the advantages of neural 
networks. 
 
6. Experimental Results 

 6.1. Prediction Using an Auto Regression 

We developed an Auto Regression model of order four 
to predict the software reliability for test/debug data of 
a program for real-time control. The model structure is 
given by the following equation: 
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Where )(kC  is the observed fault and )(kC
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is the 
predicted fault, an auto regression has been used to 
identify the values of the parameters ia (k=1,2,3,4). A 
data set represents 70% of the collected data that was 
used in the training phase. To verify the results of the 
parameter estimation process, the model has been 
tested with whole data set that represents 100% of the 
collected data for various projects. The results of the 
parameter estimation procedure are given in Table 1. 
The NRMSE of the testing, in regression model case 
also, is given in Table 2. 

 
6.2. Prediction Using Neural Networks 

In the following section, we will show the prediction 
of the software reliability model, using neural networks 
in the training and in the testing cases. 

 

6.2.1. Training and Testing  

The neural networks were trained with a different set 
of initial weights until the best sets of weights were 

calculated and the NRMSE was reduced to a small 
value. We used the neural networks weights developed 
from the training case to test the neural networks 
performance. The neural networks model has been 
tested with the rest of the collected data, which 
represents 100% of the collected data set. The 
NRMSE of the testing in neural networks case is given 
in Table 2. In Figures 1 to 3 we are showing the 
training and testing results for various projects using 
regression model, also, in Figure 4 to 6 we are showing 
the training and testing result for the same projects 
using neural networks. 

 
7. Conclusions and Future Work 

 
We have shown that the neural networks can be used 
for building software reliability growth models. Neural 
networks were able to provide models with smaller 
NRMSE than the regression model in all considered 
cases. If a regression model with a higher order had 
been considered then probably a smaller NRMSE 
would have been obtained. However, the number of 
the regression model parameters will be increased. This 
will require more observations for providing a reliable 
estimate of the parameters. The entire system of 
software reliability research is considered useful for 
software development and testing industry. At the 
present we are investigating the use of genetic 
programming to solve the software reliability problem. 

 
Project 
Name 

Military 
 

Real Time 
Control  

Operating 
System 

a0 3.7427 2.3977 0.4034 
a1 1.0087 0.8898 1.0621 
a2 -0.0181 0.0730 -0.0841 
a3 -0.2301 -0.1549 0.2673 
a4 0.2249 0.1612 -0.2392 

 
Table 1: Results for the Estimation of a’s using Least Square 
Estimation. 

 
Project 
Name 

Military 
 

Real Time 
Control  

Operating 
System 

Number of 
Faults 101 136 277 

Training 
Data 71 96 194 

Testing  
Data 101 136 277 

Regression 
Model 3.1434 1.7086 1.0659 

Neural 
Networks 1.0755 0.5644 0.7714 

 
Table 2: A Comparison between Regression model order 4 
and neural networks model in testing case (NRMSE). 
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Figure 1: Actual and Estimated Faults Prediction error using 
LSE: Real-Time and Control Applications 
 

Figure 2: Actual and Estimated Faults prediction error using 
LSE: Military Applications.   

 

Figure 6: Actual and Estimated Faults prediction error using 
NNs: Operating Systems Applications.  

 
 

 

Figure 3: Actual and Estimated Faults prediction error using 
LSE: Operating Systems Applications.  

 
 

Figure 4: Actual and Estimated Faults prediction error using 
NNs: Real- Time and Control Applications  

 

Figure 5: Actual and Estimated Faults prediction error using 
NNs: Military Applications.  

 
 
 

12



Acknowledgment: 
 
Dr. Aljahdali, and Dr. Buragga, would like to thank 
Taif University, and King Faisal University for their 
support during this research. 
  
8.  Bibliography 
 
1. Aljahdali, S. “Prediction of Software Reliability 

Using Neural Network and Fuzzy logic”, Ph.D. 
Dissertation presented to the faculty of College of 
Graduate Studies., Dept. of the Software 
Engineering and Info. System, George Mason 
University, Fairfax, Virginia, U.S.A, May 2003.   

  
2. Aljahdali, S., Sheta, A., and Habib, M.  "Software 

Reliability Analysis Using Parametric and Non-
Parametric Methods”, Proceedings of the ISCA 
18th International Conference on Computers and 
their Application, March 26-28, 2003, pp. 63-66. 

 
3. Aljahdali, S., Sheta, A., and Rine, D.,  “Predicting 

Accumulated Faults in Software Using Radial Basis 
Function Network”, Proceedings of the ISCA 17th 
International Conference on Computers and their 
Application, 4-6, April 2002, pp. 26-29. 

 
4. Aljahdali, S., Sheta, A., and Rine, D.,  “Prediction 

of Software Reliability: A Comparison between 
regression and neural network non-parametric 
Models”, Proceeding of the IEEE/ACS 
Conference, 25-29, June 2001,pp.470-471. 

 
5. Ganesan, K , Khoshgoftaar ,T.M., Allen, E.B. ,“ 

Case based Software quality prediction”, 
International Journal of Software Engineeering 
and Knowledge Engineering, 1999, 9(6), 
Forthcoming. 

 
6. Khoshgoftaar , T.M.,Allen, E.B, Jones, W.D., 

Hudepohl, J.P., “ Which Software modules have 
faults that will be discovered by Customers?”, 
Journal of Software Maintenance: Research and 
Practice, , Jan 1996,11(1):1-18. 

 
7. Khoshgoftaar, T.M. , Pandya A.S., Lanning, D.L. 

,“Application of Neural Networks for Predicting 
Faults”, Annals of Software Engineering, 
1995,1:141-154. 

 
8. Khoshgoftaar, T.M., Allen, E.B., “Logistic 

Regression Modeling of Software Quality”, 
International Journal of Reliability, Quality and 
Safety Engineering, Dec. 1999, 6(4), Forthcoming. 

9. Liang T., Afzel, N.  “Evolutionary neural network 
modeling for software cumulative failure time 

prediction ”, Journal of Reliability Engineering 
and System Safety, 2005, Vol.87, pp. 45–51. 

 
10. Liang T., Afzel, N. “On-line prediction of 

software reliability using an evolutionary” 
connectionist model”, Journal of Systems and 
Software, 2005, Vol. 77, pp. 173–180. 

 
11. Musa, D. J. “Software Reliability Engineering: 

More Reliable Software Faster and Cheaper” 
Author house, Indiana, 2004.  

 
12. Srinivasan, K., and Fisher, D., “Machine learning 

approaches to estimating software development 
effort”, IEEE Trans, Software Engineering, 21 
(1995) pp.126-137. 

 
13. Stewart, W.,  “Collinearity and least squares 

regression”, Statistical Science, 2(1987) pp. 68-100. 
 
14. Tian, J, “ Better Reliability Assessment and 

Prediction through Data Clustering”, IEEE 
Transactions on Software Engineering, October 
2002, Vol. 28, No. 10. 

 
15. Tian, J, “ Software Quality Engineering”, John 

Wiley and Sons Inc. 2005. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13




