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Abstract: In this paper, an alternative method based on decision
fusion is presented to improve the segmentation accuracy. The
proposed method concludes multiple methods instead of a single
one. It consists of a set of segmentation methods that are consulted
in parallel. The decisions of the various methods are then combined
by a fusion module. The individual methods, in this case, are
capable of independent and simultaneous operation. Then, we
apply and compare the fusion schemes to the area of image
segmentation. We seek answers to the questions: Can combining
multiple segmentation methods achieve better, final partitioning of
an image? If so, how much is this improvement? And which fusion
scheme may perform best of all?
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I. INTRODUCTION

Image segmentation is still a subject of on-going investigations and
it cannot be conclusively stated that the segmentation problem has
been solved because of the application's diversity. In particular, the
superiority of one technique over the others cannot be claimed;
many experimental results [1,2] showed that the segmentation
accuracy depends more on the particular application rather than on
the technique chosen to perform the task. Moreover in many
applications it is very difficult to design segmentation system that
exhibits the required accuracy for the final segmentation product.

A variety of schemes have been proposed for the combination
step in the different application domains (e.g., [3,4]). In [5] multi-
clustering approach is introduced, where multiple clusterings (using
the k-means algorithm) are exploited to determine a co-association
matrix of patterns, which is used to define an appropriate similarity
measure that is subsequently used to extract arbitrarily shaped
clusters.

Olivier et al. [6] proposed a Bayesian method for data fusion,
rather than decision fusion, of images, with a Potts Markov
Random field model on the hidden variable. Alexander et al. [7]
considered combining weak clustering algorithms that use data
projections and random data splits. A simple explanatory model is
offered for the behavior of combination such weak components.
They have been analyzing combination accuracy as a function of
parameters, which control the power and resolution of component
partitions.

The authors of [8] suggested a method that allows a segmentation
of multispectral images through a scalar approach. The suggested
method proceeds in three steps. The first step tempts to eliminate
redundant observations by maximizing an entropy criterion. Scalar
segmentations via an automatic multi-thresholding technique are
applied on relevant bands, in the second step. Finally, a fusion of
the multi-thresholding results is achieved in the last step to provide
the final segmentation.

In this paper, we present an alternative method for improving
image segmentation. The proposed method is focused on decision
fusion using parallel architectures and based on combining the
decisions made by multiple segmentation methods to develop the
segmentation accuracy over than a single segmentation technique.
The individual segmentation methods are capable of independent
and simultaneous operations. However, our work is different from
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that carried by the authors [4-8] in a number of aspects. Our interest
here is the segmentation of medical and non-medical images, while
the most other works [7, 8] were devoted to other domains such as
remote-sensing image classification. This is because the importance
of medical image analysis demands quality segmentation which the
single method can not provide. Also, the art of the fusion is
improved by fusing different methods applied to huge number of
clusters at the same time. For example, in order to apply the
different fusion rules on segmentation methods, some of which
produce crisp outputs. Thus we need to convert the hard decisions
to soft.

Moreover, our research spans a wider mix of various segmentation
methods covering the key classical methods and the rather more-
recent techniques based on fuzzy clustering [9,10] that have
enjoyed noticeable success in that field.

The rest of the paper is organized as follows. Several segmentation

methods are reviewed in section II. Section III presents some
decision fusion methods. Experimental results are presented in
section IV. In section V, we present our conclusions and future
work.

I1. Image Segmentation Techniques
In this section, we briefly present several existing key segmentation
methods, which will be combined in fusion methods.

A. Histogram thresholding

Histogram thresholding is one of the oldest techniques for image
segmentation. It assumes that images are composed of regions with
different gray level ranges, the histogram of an image can be
separated into a number of peaks (modes), each corresponding to
one region, and there exists a threshold value corresponding to
valley between the two adjacent peaks.

A thresholding procedure attempts to determine an intensity
value, called the threshold, which separates the desired classes. The
segmentation is then achieved by grouping all pixels with intensity
between two such thresholds into one class. This method relies on
the identification of a good threshold. Failing to find such a
threshold may lead to poor segmentation. In addition, thresholding
typically does not take into account the spatial characteristics of an
image. This causes it to be sensitive to noise and intensity
inhomogeneities. A rather recent strategy has been proposed by
Bonnet [11] to overcome the difficulty of identifying a good
threshold.

B. Region growing

The region growing method is a well-developed technique for
image segmentation [12]. It postulates that neighboring pixels
within the same region have similar intensity values. The general
idea of the region growing method is to group pixels with the same
or similar intensities to one region according to a given
homogeneity criterion. More precisely, the region growing method
starts with a set of pre-specified seed pixels and grows from these
seeds by merging neighboring pixels that satisfy a homogeneity
criterion. The procedure is iterative; this process is repeated until no
more pixels are merged.

The region growing method can utilize the relationships of
neighboring pixels and is not sensitive to the ill-balanced data
problem. However, the problem with region growing is its inherent
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dependence on the selection of seeds (often done manually), and
how to set the homogeneity criterion.

C. K-means clustering method

K-means clustering, also known as hard c-means clustering, is
one of the simplest unsupervised classification algorithms. The
procedure follows a simple way to classify the dataset through a
certain number of clusters. The algorithm partitions a set of N

vector X={ x; ,j=1,...,N} into C classes ¢, i=1, ..., C, and finds a

cluster centre for each class V;denotes the centroid of clusterC;

such that an objective function of dissimilarity, for example a
distance measure, is minimized. The objective function that should
be minimized, when the Euclidean distance is selected as a
dissimilarity measure, can be described as:

T A

k.xyec;
where Z ” x, -V, ”2 is the objective function within group i,

i

k,x;ec;

and “ x, -V, “2 is a chosen distance measure between a data

point x; and the cluster centre V;.

The partitioned groups are typically defined by a (C x N) binary
membership matrix U=( u;; ), where the element u;; is 1 if the j-th
data point x; belongs to group #, and 0 otherwise. That means:
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oo otherwise
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where R; is number of data point in class ¢;
The K-means clustering algorithm consists of the following steps:

Step I: Initialize the cluster centersV,, i =1,...,C. This is typically

achieved by randomly selecting C points from among all
of the data.

Step 2: Determine the membership matrix U according to Equation
).

Step 3: Compute the objective function according to Equation (1).
Stop if either it is below a certain tolerance value or its
improvement over previous iteration is below a certain
threshold.

Step 4. Update the cluster centers V;, i=1,..., C using Equation

A3).
Step 5: Go to step 2.

The algorithm is rather sensitive to the initial randomly selected
cluster centres. In addition, the number of clusters has to be
supplied beforehand. However some methods (e.g., [13]) have been
tried to estimate this number automatically.

D. Fuzzy C-means clustering method

Fuzzy c-means clustering (FCM), also known as fuzzy
ISODATA, is a data clustering algorithm in which each data point
belongs to a cluster to determine a degree specified by its
membership grade. Bezdek [14] has proposed this algorithm as an
alternative to earlier K-means clustering. FCM partitions a
collection of N vector x;, i=1,...,N into C fuzzy groups, and finds a
cluster centre in each group such that an objective function of a
dissimilarity measure is minimized. The major difference between
FCM and K-means is that FCM employs fuzzy partitioning such
that a given data point can belong to several groups with the degree
of belongingness specified by membership grades between 0 and 1.
In FCM, the membership matrix U is allowed to have not only 0

and 1 but also the elements with any values between 0 and 1, this
matrix satisfies the constraints:

C
You, =1,Yj=1., N @
i=1
The objective function of FCM can be formulated as follows:
C N 2
P(u,cl,...,cc)=22u;)lxj—Vl.“ ’ ®)

i=1 j=1
where u;; is between 0 and 1; V; is the cluster centre of fuzzy group

i, and the parameter m is a weighting exponent on each fuzzy
membership (in our implementation, we take it 2). Fuzzy
partitioning is carried out through an iterative optimization of the
objective function shown above, updating of membership u; and

the cluster centres V j by:

N m
_ Z j=1 Uy x; (6)
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The FCM clustering algorithm is composed of the following steps:

Step 1: Initialize the membership matrix U with random values
between 0 and 1 such that the constraints in Equation (4)
are satisfied.

Step 2: Calculate fuzzy cluster centers V

Equation (6).

Step 3: Compute the cost function (objective function) according to
Equation (5). Stop if either it is below a certain tolerance
value or its improvement over previous iteration is below
a certain threshold.

Step 4: Compute a new membership matrix U using Equation
.

Step 5: Go to step 2.

i» 1=1,..., C using

D. Kernelized fuzzy c-means method

The kernel methods [15] are one of the most researched subjects
within machine learning community in the recent few years and
have widely been applied to pattern recognition and function
approximation. The main motives of using the kernel methods
consist of: (1) inducing a class of robust non-Euclidean distance
measures for the original data space to derive new objective
functions and thus clustering the non-Euclidean structures in data;
(2) enhancing robustness of the original clustering algorithms to
noise and outliers, and (3) still retaining computational simplicity.

The algorithm is realized by modifying the objective function in
the conventional fuzzy c-means (FCM) algorithm using a kernel-
induced distance instead of Euclidean distance in the FCM, and
thus the corresponding algorithm is derived and called as the
kernelized fuzzy c-means (KFCM) algorithm, which to be more
robust than FCM.
In this work, the kernel function K(x,V ) is taken as the Gaussian
radial basic function (GRBF):

K@JO:em{:k;Vr]’ ®
o

where O is an adjustable parameter. The objective function is
given by:

C N
Jn =20 u, (1=K (x,,v,)) ©)
i=l j=1
The fuzzy membership matrix u can be obtained from:
(-KG )" (10)

U, =
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The cluster center V; can be obtained from:
N m
_ Z;:ﬁ‘if KQx;,v))x,

N m
Z;:luij K(x;,v;)
The proposed KFCM algorithm is almost identical to the FCM,
except in Step 2, Eq.(11) is used instead of Eq.(6) to update the
centers, and in step 4 Eq.(10) is used instead of Eq.(7) to update
the memberships.

E. Spatial constrained SKFCM method

SKFCM is applied directy to image segmentation like FCM, it
would be helpful to consider some spatial constraints on the
objective function. This penalty term contains spatial neighborhood
information, which acts as a regularizer and biases the solution
toward piecewise-homogeneous labeling. Such regualization is
helpful in segi™enting images corrupted by noise. The objective
function is as follows:

ZZuU (l K(xj,v))+—zzu,, Z(l—“i,)'" (12)

i=1 j=1 R i=l j=1 reN J

where N; stands for the set of neighbors that exist in a window
around x; (do not include x; itself) and Ny is the cardinality of N;.
The parameter o controls the effect of the penalty term and lies
between zero and one inclusive.

An iterative algorithm for minimizing Eq.(12) is derived by
evaluating the centroids and membership functions that satisfy a
zero gradient condition like the KFCM. A necessary condition on

u;; for Eq.(12) to be at a local minimum or or saddle point is:
1 (m-1)

((1 K(xj,v))+(az (1-u;)" /N, )f 13)

Z" l((l K(x.l’vk ))+(aZreN (1 ub) /N 1 (m-1)

The proposed SKFCM algorithm is almost identical to the
KFCM, except in Step 4, Eq.(13) is used instead of Eq.(7) to
update the memberships.

Two major problems are known with the FCM, KFCM, SKFCM
methods: (1) How to determine the number of clusters. (2) The
computational cost is quit high for large data sets. Some
improvements over these methods are proposed in [13].

(11

uij—

I11. Decision Fusion

Once the set of segmentation has been created, an effective way of
combining their outputs must be found. Fusion of multiple
methods can be performed either at data level or at the decision
level. We focus in this paper on decision fusion using parallel
architectures. The problem can then be stated as follows. The goal
is to assign each image point x to one class label a; out of C class
labels 2=(R, ,..., Rc } . To accomplish this task, a set of L
segmentation methods may be consulted. The output of each
method can be one of two types:

e Class label (hard output): Z Q).

e  Soft output: A C-element vector Z = [ Z; 1 seens Z; C]
which represents the supports to the C classes. A special

case of this vector is a probability distribution over 2
probabilities P( Ri / x)
=1,...,C (shortened as P(R;x) in the sequel).

estimating the posterior

There are many decision fusion methods for each type of outputs.
In this paper, we will use several of them, namely, the popular
voting methods [16] for hard outputs and the minimum, maximum,
median, and product rules for soft outputs.

A. Voting scheme
Voting strategies [16] can be applied to a multiple classifier
system. An input sample is assigned the class for which there is a

consensus of the L segmentation methods agreed on its identity.
Otherwise, the sample is rejected. Numerous voting techniques
have been presented in the literature, the most popular of which is
the majority vote. In majority voting method, the probability among
the classifiers are equal and does not require any parameters to be
trained. The differentiation between the classes is the number of
votes they have received. Assuming a lack of extra information, a
tie can only be broken by a random draw. However, in the complete
agreement mode, when all the individual classifiers agree on the
classification of a sample, the sample is classified to that class,
otherwise, the sample is rejected.

B. Fusion techniques for soft labels

The largest group of fusion methods combines soft
decisions. Most popular among them are the minimum,
maximum, mean, median and product fusion rules, which
are defined as follows [16].

a) Median rule: The rule assigns X to R; class where p L(R,x) 1S

maximum: P, (R, x )= m;_‘{ u, (%) (13)

b) Mean rule: The rule assigns X to R; class where

PW(R"x)ismaximum: (R,x )= mean u,, (%) (14)

¢) Maximum rule: The rule assigns X to R; class where P.(R.x)

is maximum:

L
P (R,x )=nzallxui‘j(x) as)
d) Minimum rule: The rule assigns X toR;class where p_(R,x )

is maximum: P (R, x )= mm u; ;(x) (16)

e) Product rule: The rule assigns X to R; class where P, (R,x) 1S
orod (Ris

L
maximum: P (R,x )= Hui,j (%) a7n
k=1

C. Converting hard decisions to soft

To apply the different fusion rules on segmentation methods, some
of which produce crisp outputs (e.g., region growing). One thus
needs to convert in this case hard decisions to soft, which is
discussed next.

A membership function is a curve that defines how each point in
the input space is mapped to a membership value (or degree of
membership) between 0 and 1. Gaussian membership function is a
popular method for specifying fuzzy sets. Gaussian models

for p(x/R)are popular because of their mathematical tractability
given by:
= (18)

1
J2re ’
where 1

K= R ka o’ er| 1Z‘:,(x 1)

P(x/R)=

- The a priori estimate of the probability of a certain class is
converted to a posterior, or measurement conditioned through
Bayes theorem, probability of a state of nature via:

P(R, /)= p(x/R)PR,), (19)
' P(x)
since " PR /x) =1, then from eq.(19) we get 5~ ./ py_ P®)
Z ZP( R= AR)

where P(R )are called a priori or prior probabilities (equal
probability), and  p(x/R) the class-conditional probability

density, which describes the chance of finding a feature vector from
class R; at the position x.
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IV. Experimental results

The experiments were performed with several data sets. The
first experiment consists of two simple synthetic images (syntheticl
and synthetic2), one corrupted by 9% salt and pepper noise, and
another corrupted by gaussian noise of standard deviation 50
respectively, and the image size is 142X 145 pixels, as shown in
Fig.1(a), and Fig.1(b), respectively. The second set includes
simulated volumetric MR data consisting of ten classes. The
advantages for using digital phantoms rather than real image data
for validating segmentation methods include prior knowledge of the
true tissue types and control over image parameters such as
modality, slice thickness, noise and intensity inhomogeneities. We
used a high-resolution TIl-weighted MR phantom with slice
thickness of Imm, 3% noise and no intensity inhomogeneities,
obtained from the classical simulated brain database of McGill
University [17]. Two slice drawn from the simulated MR data is
shown in Figs. 1(d) and 1(e).

Fig.1: Test images: (a) Synthetic 1, (b) Synthetic 2, (c) 3D
simulated data, (d) and (e) two original slice from the 3D simulated
data (slice91 and slice100).

The quality of the segmentation algorithm is of vital importance to
the segmentation process. The comparison score S for each
algorithm is proposed in [15], which defined as:

ANnA4,, (20)
Au 4,

where 4 represents the set of pixels belonging to a class as found by
a particular method and A4,.rrepresents the set of pixels belonging to

the very same class in the reference segmented image (ground
truth).

Image segmentation results

Here, the aforementioned segmentation methods have been
implemented. For the techniques of region growing and histogram
thresholding, the seeds and thresholds were selected manually with
great care. The Gaussian RBF kernel is used for KFCM and
SKFCM. We set the parameters m=2, =150, & =0.7 and N =26
when using 3D MR phantom image, because the add noise is
relatively big, otherwise we use ¢o=0.1, and Nz=8 (a 3 X 3
window centered a round each pixel). These values will be used in
the rest of this work if no specific value is explicitly stated.

Experiment on syntheticl

We applied these algorithms to a synthetic test image; the
synthetic image contains a two classes pattern corrupted by 9% salt
and pepper noise. The performance of each segmentation method
on this dataset is reported in the upper part of the first column of
Table 1. The table shows that the highest segmentation accuracy is
obtained using region growing. However their accuracy depends
largely on how well the initial seeds are manually selected. After
that SKFCM gives better results than the other methods, and the
other methods are obtained similar accuracy.

Experiment on synthetic2

The performance of each segmentation method on the 4-class
synthetic image synthetic2 is reported in the upper part of the
second column of Table 1. Obviously, histogram thresholding
acquires the best segmentation performance, and the least
segmentation accuracy is obtained by applying the region growing
method. Note FCM, KFCM, SKFCM and k-means give similar
accuracy.

We tested the efficiency of the accuracy for a synthetic2 image
with various degrees of standard deviation of gaussian noise.
Fig.(2) depicts the relationship between accuracy results when
FCM, KFCM, SKFCM, histogram and region growing are applied
to synthetic2 image and various degree of standard deviation of
gaussian noise. Note, region growing the most segmentation
method affected by noise.

. S
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Fig.2: The relation between accuracy and standard deviation, when
FCM, KFCM, SKFCM, histogram and region grow are applied on
synthetic2 image.

Experiment on the simulated 3D data.

The upper part of the 3™ column of Table I shows the
corresponding accuracy scores of the individual segmentation
methods after applying them on the simulated data. Obviously, k-
means and histogram acquires the best segmentation performance,
and the other methods gave similar accuracy.The outcomes from
the individual image segmentation techniques have been fed to the
fusion algorithms.

The lower part of the first and second columns of Table I show the
performance of each fusion method on syntheticl and synthetic2,
respectively. The table shows that the highest segmentation
accuracy is obtained using the mean fusion rule. It gives an
improvement about 2.6% and 3.7% over the accuracy of the best
individual segmentation method and an improvement about 6.7%
and 4.4% over the average segmentation's accuracy for syntheticl
and synthetic2, respectively. The average fusion accuracy
improvement is showed to be about 6.5% and 4.2% higher than the
average segmentation accuracy for syntheticl and synthetic2,
respectively.

The lower part of the 3™ column of Table I shows the
performance of each fusion scheme on the MRI dataset. The table
shows that the highest segmentation accuracy is obtained using the
maximum fusion rule; it is obvious that the mean fusion rule
exhibited similar value on this set. The least performance is
obtained applying the minimum and product fusion rules. The
maximum fusion rule gives an improvement about 1.7 % over the
best segmentation accuracy and an improvement about 2.8 % over
the average segmentation accuracy, where the average fusion
accuracy is computed here by averaging all the fusion methods
except the product and minimum rules, which gave the worse
results. The average fusion accuracy improvement is showed to be
about 2.4% higher than the average segmentation accuracy, again
not including the product and minimum rules. The result also shows
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that we get better accuracies using the fusion soft output as it
contains more information than the hard outputs.
Weak segmentation

In this experiment, the same set of segmentation methods is used
without going through the tuning phase to reach the best possible
accuracy. Instead the segmentation methods are used deliberately at
worse performance accuracy. For example, this can be done by
selecting the initial seeds and number of clusters carelessly. The
accuracies of intentionally made weak segmentation methods on
two datasets are listed in the upper part of the last two columns of
Table I for the synthetic2, and simulated 3D data, respectively.

Applying the same fusion schemes on the test set for this set of
segmentation methods, the results are reported in the upper part of
the last two columns of Table I for the synthetic2 and simulated 3D
data, respectively. This table shows that the highest segmentation
accuracy is obtained using mean scheme and the least is obtained
by applying the minimum or product fusion rule.

This Table shows that the highest segmentation accuracy is

obtained using mean scheme and the least is obtained by applying
the minimum or product fusion rule. For the synthetic2 image, the
mean fusion rule gives an improvement about 5.43% over the best
segmentation method accuracy and an improvement about 16.23%
over the average segmentation accuracy. The average fusion
accuracy improvement is showed to be about 2.76% higher than the
average segmentation accuracy.
For the simulated 3D data, the mean fusion rule gave an
improvement about 6.68% over the best segmentation accuracy and
an improvement about 10.6% over the average segmentation
accuracy. The average fusion accuracy improvement is shown to be
about 5.76% higher than the average segmentation accuracy.

Table I : Segmentation accuracy of individual methods and
performance of implemented fusion techniques on syntheticl,
synthetic2, and MRI volume dataset.

Accuracy
Method Well-tuned Methods Weak Methods
Synthetic | Synthet MRI Synthetic MRI
1 2 volume 2 volume
FCM 0.91615 |0.832537| 0.52531 0.44609 0.34495
= KFCM 0.91597 ]0.835839| 0.53341 0.47152 0.37227
o 'g SKFCM| 0.95286 |0.835316] 0.54708 0.20227 0.34703
:_g E Region 0.97320 ]0.693539| 0.54842 0.43607 0.35372
= Histogram| 0.91704 |0.842303| 0.55275 0.44721 0.40460
K-means 0.91776 |0.826830| 0.55394 0.53383 0.36929
Voting 0.99389 [0.878961| 0.56309 0.52684 0.46103
] Max 0.99854 |0.870248| 0.57182 0.35748 0.39077
g :g"‘ Min 0.99438 |0.870338| 0.13433 0.35896 0.40123
g ..§ Mean 0.99980 |0.880148| 0.57075 0.58813 0.47150
i & | Median 0.99980 |0.880056| 0.56633 0.57429 0.42412
Product 0.99873 10.880148| 0.13452 0.35909 0.39167
V. CONCLUSION

An alternative methodology for improving image segmentation
has been presented. Rather than tuning a method for the best
possible performance. It resorts to combining several methods via
decision fusion to improve the segmentation accuracy. Our
experiments have shown that decision fusion can indeed improve
the segmentation accuracy over the best/average individual
segmentation methods accuracy. Moreover, the mean fusion rule
has exhibited the best overall performance in all our experiments,
outperforming all other schemes. The mean rule has given an
improvement about 10.6% over the segmentation average accuracy
for a set of intentionally- made weak methods for segmentation.
Our results have also stressed that the gain from decision fusion for
such a weak set, without any efforts for performance optimization
or tuning, can even be more evident than for a set of very-accurate
members.

For our future work we will investigate more fusion methods and
other approaches for image segmentation. Our ongoing work
includes a further, thorough objective and subjective evaluation of

the improvement gained from decision fusion over the individual
segmentation techniques, via the help of specialized medical
doctors.
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