
A Methodology for the Abstraction of Design
Components from the Software Requirement

Specification to the Object Oriented System

Syed Naimatullah Hussain and Nisar Hundewale

College of Computers and Information Technology
Taif University

Tail Saudi Arabia
s.naimatullah@tu.edu.sa, nisar@computer.org

Abstract-The software developer's task begins with the

procurement of project charter. This is a legal document

containing details regarding the software requirement

specification (SRS), cost and the schedule etc., of the project. The

SRS of the organization is a text document incorporating the
requirements of the organization. The software development of

any information system is based on the SRS of the client

organization. This paper attempts to abstracts design

components (Object class name, Object methods, and its

attributes, Actors and interfaces of actors) from software

requirement specification.

The objective of this paper is to develop a single semi automated

methodology for the abstraction of different useable components

from SRS, so that they can be transformed as model elements. To

provide a semiotic environment for the design of model elements

to the transformation of useable components.

I. INTRODUCTION

UML has become a de facto standard [2]for the design and
implementation of object oriented information system. Though
the UML is a boom for the design of business processes in an
object oriented paradigm, the success rate of projects involving
the design using UML is very slow. Apart from other internal
lacunae of UML itself, the main reasons for low success rate
are due to the non availability of a correct and complete
methodology for the design of information system. Though,
few of the methodologies viz. Noun phrases approach,
common class pattern approach, Use case driven approach and
classes Responsibilities and collaborators [3][4] exists only for
the abstraction of the object class names and few methods. But
they seldom lessen the burden of arbitrary use of human skills.
These methodologies contain conjecture based steps and also
oxymoron concepts in different steps of same mythology, they
can hardly be realized in practice. Thus, the existing
methodologies at most serve as patterns or frame works per
specific types of business processes. Most of the methods of
the methodologies are manual without appropriate guide lines.
This absence of concrete guidelines gives scope for arbitrary
use of human skills. Thus the methodologies lose their
relevance. In their proposed steps, the authors are not explicitly
addressed the correctness and completeness of each step (input
& output of the step).

978-1-4673-2008-5/12/$31.00 ©2012 IEEE

311

Sultan Aljahdali and Ashfaq Ahmed K

College of Computers and Information Technology
Taif University

Tail Saudi Arabia
alj ahdali@tu.edu.sa,ashfaqme@gmail.com

The SRS is the abstraction of number of end-user's
requirements. Because of the environment in which the
individual is working, the end user may use different words for
the same meaning. Thus, the SRS contains synonymous words.
In addition, the use of contexts specific words compels the end
user to use the same word for different meanings. Thus, SRS
also contains homonymous. The non-resolution of synonymous
issue results in the redundancy model elements whereas; non­
resolution homonym issue results in violation of uniqueness of
the model elements. Thus any information system design needs
to resolve the synonym and homonym issues. In general for
other paradigms, the synonyms & homonyms issue is resolved
by the different researchers. However, their resolution is
limited to resolving the issue only at the system level and not at
the application level. The end-user need to have a mechanism
for mapping the system level synonymies to his corresponding
synonymous words on separate name, specific to the
application into an original homonym name. Alternatively, the
end-user may be provided with list of synonymy issues as it
may give scope for the intrusion of erroneous data. These
shortfalls compel the design components abstraction for an
information system to be human dependent and the success
depends on individual skills. Thus, the success rate of the
information system developed using such error prone
approaches swings. There is an urgent need to isolate the
dependency of software development success rate on human
skills and to elevate it to the height of the automatic process.

This paper attempts the automatic abstraction of design
components (design components: Object class name, Actors
and interfaces of actors, and its attributes) this methodology
that overcomes all the identified shortfalls like presence of
synonymies & homonyms, the conjectures based steps,
existence of oxymoron concepts between steps, absence of
correctness & completeness authentication and limitation in the
number of design components abstracted through existing
methodologies. And groups the attributes of a class using the
good data base design principles and strong cohesion & weak
coupling concepts. Concurrently, the methodology also
abstracts the actor interfaces & their attributes that are involved
in the interaction with the information system.

The proposed methodology also abstracts the groups from
set of identified attributes and also the subset of attributes for
which there exist a method in the SRS. The attributes subset
may contain parameters of the object class participating either
as a referenced or as defined attributes in the methods and may
optionally contain attributes of other object class or other actors
interface as parameters referenced or defined in those methods.

The steps of this methodology will be with sound reasoning
& mathematical rigors. Most of the steps may be automated
and remaining few are semi automated in the sense that a lot of
guidelines steps are proposed to narrow down the difference
between the human skill & the actual process and their scope is
limited to the authentication of correctness & completeness of
each step.

II. LITERATURE REVIEW

We have studied available literature in the area: the existing
methodology and available tools and techniques have the
following shortfalls.

Rebecca Wirfs Brock et al [3][4]. have developed twelve
steps methodologies to abstract object class name only. The
process of identification is iterative process from the software
requirements specification as input.

Step1: Read through the requirements specification for
nouns/nouns phrases and identify them. Convert plurals into
singulars and make a preliminary list.

Shortfall: In the above step attributes are discarded in
subsequent steps and the intransitive verb has not been
represented in the abstracted noun/noun phrases because it
contains incomplete object class name.

Step2: categorize noun phrases into relevant, irrelevant and
fuzzy classes.

Shortfall: This step just act as suggestion, as their does not
exist any categorization

Step3: Discard irrelevant classes from noun phrases.

Shortfall: This elimination depends on individuals human skills

Step4: eliminate redundant noun/noun phrases

Shortfall: Identify synonyms and homonyms Issues before
elimination

StepS: considered the retained nouns/noun phrases as first cut
object class names

Shortfall: This step does provide any guidelines to filter the
attribute names from object class name

Step6: analyze noun/noun phrases containing adjectives means
different object, different use of same object or different states
of the object class

Shortfall: No guidelines have been provided for analyzing the
noun/noun phrases, according our view noun phrases
containing adjective may be an object class or state of the
object class or attribute.

312

Step7: Review nouns/noun phrases for possible attributes,
noun phrases presented only as are attributes

Shortfall: Non availability of guidelines, and also this step will
not filter the attribute group names from the object class names

Step8: convert passive voice sentences into active voice

Shortfall: There is no sound reasoning behind this step. This
step abstracts only the object class names.

Step9: For each identified noun/noun phrases there should bea
statement of purpose.

Shortfall: There are no proper guidelines.

SteplO: Model categories of classes i.e. super class, subclass
hierarchy

Shortfall: This steps lacks proper guidelines

Stepll: model interfaces to outside world i.e. interface to other
program which helps in identifying complex object classes.
Shortfall: The above step helps in identifying the interface but
it is not clear how to identify it.

Step12: Identify missing classes from the irrelevant and fuzzy
class

Shortfall: This itself show the incompleteness of the
methodology, as in step3 the authors have suggested to discard
the irrelevant classes

A. Common Class Pattern Approach (CCP) (developed by
shlaer et. AI.) [3][4}

Shortfall: CCP considers the entity as the object class
structures. We know that the object class, the structure, the
entity, the states and methods are encapsulated together. But in
the entity concept functionality may utilize part of an entity
attributes or it may contain number of attributes across
different entities. Thus it fails to distinguish between entity and
the object class structure. Authors have not considered the
good database design principles. This method does not provide
any idea for assigning the attributes to different object classes.

B. Use case driven approach [3][4}

Shortfall: In this approach the authors have abstracted the
scenarios of different activities from the SRS and then
decomposed the scenarios based on actors to form use-cases.
Then, for each of these use-cases, a sequence/collaboration
diagram is designed to abstract object class names.
The authors in the above approach have stated that, the object

classes are abstracted from the scenarios of the SRS. That

indicates the object classes are guessed during sequence

diagram design. This methodology may be use for some

specific application

C. Deva Kumar et. al [5}

This paper uses a tool (UMGAR) which is nothing but

automation of noun phrase approach and short falls of noun

phrase approach is already addressed in the earlier part of

literature survey.

D. G.s. Anandha et al

The authors in this paper have addressed the abstraction of
all the useable components but failed to authenticate the
correctness & completeness of this methodology.

E. MG. Ilieva et al

This approach consists of three main processing parts: i) the
Linguistic Component, in which the sentences in the text are
analyzed; ii) the Semantic Network, built by the formal NL
presentation; and iii) 00 modeling, the final phase of the
formal presentation of the specification, through which the
knowledge and information included in the semantic network
are transmitted to the 00 analysis model's elements. This
paper fails in Actors identification and also authentication of
correctness and completeness.

F. Sukhamay Kundu et al

The authors are identifying the functions which should be
factored into sub functions, including their desired signatures
and a reduced use-complexity, in order to simplify the class
subclass structure. This paper helps in the designing only the
class and subclass structures but fails to identify the object
class structure i.e object class name, attributes, actors and its
interfaces.

G. H.J Klien et al

The authors discuss the relational concept of a functional
dependency can be adopted to object databases in order to get
more convenient ways of fetching objects. This paper helps in
formation of functional dependencies for object database which
is part of our object structure identification.

H. Sagar Pidaparthi et al

The authors have given more weight age to the procedural
oriented paradigm hence they have not use the naturalness of
Object - Oriented paradigm which gives the perfect balance
between data and procedural oriented paradigm, and also
which more towards naturalness

1. D. L. Carver et. Al

In their approach stated that system is decomposed from an
object rather than from a functional view point. Among the
characteristics exhibited by an object model are abstraction,
encapsulation, hierarchy and typing. Abstraction is achieved by
the conceptual boundary that makes object distinguishable,
encapsulation is present by the hiding of unneeded details
about the object modularity is achieved as a result of the high
cohesive and low coupling exhibited by the objects. The
authors have used only Good Software Engineering Design
Principles for object class identification. We are going to use a
perfect combination of Good Software Engineering design
Principles as well as Good Database Design Principles.

J. Enrico Maim et.al

This paper explores the functionality of recognition in a
constraint- based framework. In such a frame work since an
attribute is only a special case of a constraint. The idea of
recognition can be a generalized rather than just reasoning from
a set of attributes to the type of an object recognition can

313

reason from any set of constraints such as arithmetic
constraints, inequalities and other relations to the type of an
object. The authors in this paper are abstracting only the object
class name and its attributes but not the Actors and its
interfaces.

III. PROPOSED METHODOLOGY

We are proposing a fourteen steps methodology for the
abstraction of design components that are required to design
the system in an object oriented environment. The proposed
methodology overcomes all the shortfalls like synonym and
homonyms issue, authentication correctness and completeness.
The proposed methodology identifies object class name from
modified noun phrase approach and groups of attributes of
object class using good design principles. Actors and its
interfaces by use of context diagram and use of questionnaire.
Further refinement of methodology is achieved through the use
of completeness and correctness.

1. Identify the nouns-noun phrases (N), Adjectives (Ad),
Transitive Verbs (Vt), Intransitive Verbs (Vi), Auxiliary
Verbs (Vaux), Adverbs (Av). and Adverbial Phrases
[3] [4]

Guideline:

• Manually Read through the SRS convert passive voice
to active voice so as to transform auxiliary &
impersonal verbs into corresponding intransitive or
transitive verbs.

• Assign a logical sequence for each SRS statement.

• Assign each statement with appropriate digit in their
logical order.

• Design a Context flow graph of the SRS statement and
represent it in the form of Table

• Represent the context flow graph in the form of four
columns table.

• Represent the data flow graph with six columns table.

2. Resolve Synonym and Homonym issues in each category
of words [13].

• For each noun or ad -noun in the defined columns of
table.

• Search the entries for a set in table.

• The homonym issue may be at the same or different
levels i.e. a noun or ad-noun may be used both at
attributes level.

• The homonyms are identified by use of nouns/ad­
nouns in different functionality. If both uses are at the
same level, assign generic name.

• Identify functional dependencies from the table

3. Use modified Wirfs-Brock approach, Abstract the
structural requirements [3] [4].

• Create a class name directory from the table.

• The table contains group of nouns/ad-nouns, this are
class name.

• The nouns/ad-nouns are studied for the presence of the
single domain. Such items form the attributes. The
remaining items are manually checked for their
characterized as attributes. Store them in class
attributes dictionary.

• The ad-nouns are categories as: attributes value
and object/subclass name.

4. Identify the main functionalities of the system, manually

from Transitive, Intransitive verbs and the associated

object classes based on statement of purpose.

• From the table identify transitive and intransitive
verbs.

5. Identify the actors of the system through the use of

questionnaire and delete their names from the noun/noun

phrases set[15].
• Design the context diagram from the SRS

• Search the answer for the following questionnaires.

o Who will use the main functionality of the
system?

o Who needs support from the system?

o Who will maintain the system i.e identify the
secondary actors?

o Which hardware the system needs to handle?

o With which other systems, the system needs
interface?

o Who/what has an interest on the product,
service or the results, the system produces?

6. Identify the functionality of the system through the use of

questionnaire and response from the use-case, attributes

[1][15].
• Intersection of word phrases from the context diagram

and questionnaire are the list of actors.

7. Ensure the utilization of all transitive verbs and

intransitive verbs should be included in the set of

nouns/noun-phrases

8. For each functionality, identify the attributes set and first

cut object class name from the noun/noun-phrases.

Remaining nouns/noun phrases. Remaining nouns/noun

phrases may be studied for their being possible synonyms
• Sieve Actor name, related attribute, class name, class

attribute, subclass and generic from each of the noun
and ad-nouns from the table

9. Design logical dataflow diagram (DFD) [14].
• A DFD is a graphical representation of flow of data

through an information system.

314

• A logical DFD it depicts the graphical representation
of overview of SRS it is used here for better
communication with users, more stable system and
better understanding of the entire business of an
information system.

lO. Perform two levels of the system data integration with

reference to data and functionalities.
• System data integration involves combining data

residing in different sources and providing users with a
unified view of these data.

o Levell: A data flow may contain part of an
entity

o Level 2: A data flow attributes of the entity
may be distributes in the number of data
flow.

11. Normalize the data flows attributes groups at least to

Boyce Codd Normal form [14].
• Normalize the data using axioms to achieve good

database design principles.

• By normalizing

o Redundancy is minimized.

o Unrelated attributes will be separated.

o Functional dependencies amongst attributes
group should be preserved.

o Inconsistencies will be eliminated.

o Data integrity will be ensured.

o Attributes will null value is minimized.

o Easy scope of maintenance.

o Each attribute will be one or the other group.

12. Ensure each normalized attributes set participates as a

dataflow in the logical DFD. If an attributes or group of

attributes set has one or more attributes common, then

apply the appropriate axioms on Functional Dependencies

to takeout the common attributes to form

a separate object.

13. Design the physical data flow diagram.
• Describing processes in more detail than logical DFD.

It clarifies which processes are manual and which are
automated

• It is used to visualized data processing(structured
design)

• A DFD shows what kind of data will be input to and
output from the system, where data is stored.

14. Identify the first cut object structures and first cut use­

cases respectively from the input data flows, and the

processes to which they have incident in the physical

DFD.

TABLE 1. CaMP ARISION

IV. CONCLUSION

The proposed fourteen stage methodology attempt to
abstract different useable components from the SRS. There
exists number of approaches for this abstraction. The Noun
Phrase approach abstract class name only which is based on
conjectures and oxymoron concepts. This step in noun phrase
approach will not abstract completely the object class names.
Some of the object class name is implicit with the presence of
intransitive verb of the same name and attributes. The
abstracted nouns/noun phrases may contain incomplete object
class. The common class approach uses the definition of entity.
Entity cannot be represented as object structures. The
correctness and completeness of the methodology is addressed.
In use-case driven approach the author have abstracted the
scenarios of the different activities from the SRS and then
decomposed the scenarios based on actors to form use-cases. In
this the author have not addressed any concrete guidelines to
abstract scenarios, nor attempted to authenticate the correctness
and completeness. No where the authors have stated that the

315

object classes are abstracted from the scenarios. In this paper
we have proposed a fourteen stage methodology for successful
abstraction of different useable components from the SRS.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the contributions of
Dr. Shivanand M Handigund, Professor and HOD CSE
Department, BIT, Bangalore, for his constant support and
encouragement for successful completion of this research
paper.

REFERENCES

[I] Pankaj Jalote (2005). An Integrated approach to Software engineering, 3rd
edition springers publications, India.
[2] Qasim Siddique (August 2010). Unified Modeling Language to Object
Oriented software development International Journal of Innovation,
management and Technology, Vol. I, No. 3, ISSN: 2010-0248.
[3] Ali Bahrami (2008) object oriented system development using unified
modeling Language, Tata McGraw-Hill Edition.
[4] Rebecca Wirfs (1990). Designing Object Oriented Software, Prentice­
Hall, India.
[5] Deva Kumar Deeptimahanti, Muhammad Ali Babar (2009) 24th

IEEE/ACM
International Conference on Automated Software Engineering, ASE '09.

[6] G.S. Anandha Mala and Dr.G.V.Uma "Object Oriented Visualization of
Natural Language Requirement Specification and NFR Preference Elicitation.
lJCSNS International Journal of Computer Science and Network Security,
VOL.6 No.8, August 2006.

[7]. M.G. Ilieva and Olga Ormandjieva A. Montoyo et al. (Eds.): NLDB
2005, LNCS 3513, pp. 392-397, 2005 Automatic Transition of Natural
Language Software Requirements Specification into Formal Presentation. ©
Springer-Verlag Berlin Heidelberg 2005.
[8] Sukhamay Kundu & Migel (IEEE-2005) 29th International Conference
Software and Application Conference "A Formal approach to Designing a
class subclass structure using a partial order on the functions" page I -8.
[9] H.J Klien and J.Rasch (lEEE-1997) in their case study "Value based
identification and functional dependencies for object databases" page 22 - 32.
[10] A case study in Migration to Object - Oriented system structure using
Design Transformation methods by Sagar Pidaparthi and Grzegorz Cysewski
(1997) IEEE page 128 - 135.
[11] D. L. Carver (lEEE-1992) in his case study "Promoting the use of an
object-oriented software development methodology by merging structured
and object oriented analysis methods" page 593 - 599.
[12] Enrico Maim (IEEE-I 992) in his case study "Recognizing objects from
constraints" page 47 - 54.
[13] Shivanand M. Handigund (2001)."Reverse Engineering of Legacy
COBOL Systems", Ph.D. Thesis, 200 I, ITT Bambay, Mumbai.
[14] S.B. Navathe et al. (1986)."A comparative analysis of methodologies for
database schema integration." ACM Computing Surveys, 18(4),323-364.
[15] William R. Duncan, A guide to project Management Body of

[16] Knowledge, PMI Standard Committee, Newtown Square, USA, 2004,

Page 50-51.

�

