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ABSTRACT 

In this paper, a study of quadratic transformations under 

Cohen‟s class is presented, to see the variations in resolution 

for performing time-frequency analysis of signals. The study 

concentrated on the analysis of linear chirp signals and non-

stationary signals in presence of noise as well as without 

noise. The resolutions based on Wavelet Transform, Short 

Time Fourier Transform are analysed. The effects of widow 

length, wavelet scale and presence of noise are researched and 

analyzed against the performance of different time-frequency 

representations. The Cohen's class is a class of time-frequency 

quadratic energy distributions which are covariant by 

translations in time and in frequency. This important property 

by the members of Cohen‟s class makes those representations 

suitable for the analysis and detection of linear as well as 

transient signals. Spectrogram, the squared modulus of Short 

Time Fourier Transform is considered to be an element of 

Cohen‟s class since it is quadratic and also co-variant in time 

and frequency. Wigner Ville Distribution is another member 

of Cohen‟s class which can be extended to many other 

variants by changing the kernel functions used for cross-term 

reductions. The trade-off in the time-frequency localization 

are studied and demonstrated with the help of different plots. 

The result of this study can be applied to enhance the 

detection and analysis of signals and to develop efficient 

algorithms in medical diagnosis as well as defense 

applications. 
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1. INTRODUCTION   

The use of time-frequency techniques in signal analysis and 

detection has been studied by many researchers at times. The 

major reason for adopting these techniques in medical and 

defense fields are the amount of simultaneous information we 

get from this. In this paper a study of quadratic 

transformations under Cohen‟s class is presented, to see the 

variations in resolution for performing time-frequency 

analysis of signals. The Cohen's class is a class of time-

frequency quadratic energy distributions which are covariant 

by translations in time and in frequency [1]. The extraction of 

useful data from a noisy multi-component signal is always a 

big challenge for the researchers in the field of signal 

processing. The concentration was on the study of linear chirp 

signals and non-stationary signals using Wavelet Transform, 

Scalogram, Spectrogram, STFT and Wigner Ville. For this 

purpose many built-in MATLAB functions provided by the 

Time-Frequency Toolbox have been used [1]. To start with, 

some generic definitions and methods in time-frequency 

signal analysis are described. After that, the need of time-

frequency representations is explained with the help of 

examples. To the end of this paper, the results of many 

transformations are plotted and explained for different types 

and combinations of input signals. 

 

2. BACKGROUND AND RELATED 

WORK 

2.1 STFT and Spectrogram 

Short Time Fourier Transform is calculated for a signal by 

pre-windowing the signal s(t) around a particular time t and 

then calculating the Fourier transform [1]. And this is repeated 

for all time instants t as in the equation 1.   

 
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Here h is the window function. The Spectrogram is defined as 

the squared modulus of STFT and is by nature a 

representation of the signal energy.  
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2.2 Wavelet Transform and Scalogram 
A continuous wavelet transform (CWT) is calculated by 

projecting a signal s(t) on a family of zero-mean functions 

called wavelets. The wavelets are deduced from a basic 

function called mother wavelet by translations and dilations 
[1]. 
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The variable „a‟ is called scale factor. If the value of |a| is 

greater than 1, in it dilates the wavelet and if the value of |a| is 

less than 1 it compresses the wavelet. The major difference 

between wavelet transform and STFT is that, when the scale 

factor is changed, then both the duration and the bandwidth of 

the wavelet are changed. But the shape of wavelet will be the 
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same as before. Another difference is that the WT uses short 

windows at high frequencies and long windows at low 

frequencies [1].  

Scalogram of a signal s(t) is defined as the squared modulus 

of the Continuous Wavelet Transform, which describes the 

energy of the signal in time-scale plane. 

2.3 Wigner Ville Distribution 
Wigner Ville Distribution (WVD) is a bilinear function of the 

signal calculated using the formula, 

  detWVD j

s .. ) 2 -(t *s . ) 2 +s(t ),( 2





    (5) 

Where t represents time and ν represents frequency. One 

major difference between the WVD and STFT is that the 

calculation of WVD does not make use of any windows [1], [2]. 

2.4 Time and Frequency Marginal 

A joint time and frequency energy density 
),(  tx is defined 

in terms of the signal energy as 

 ddttE xx ,),(








           (6) 

Since the energy is a quadratic function of the signal, the 

time-frequency energy distributions will also be in general 

quadratic representations. The energy density parameter also 

satisfies marginal properties as define below. Integrating the 

energy density along one time axis will give rise to the energy 

density corresponding to frequency and vice versa [1].  

2
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Using the generic mathematical equations (7) and (8) for 

quadratic distributions, the marginal of WVD along frequency 

axis can be described by 

2
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2.5 Cohen’s Class 
Cohen‟s class of signals are generally represented by  



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where,   is known as smoothing function. So, the Cohen‟s 

class can be defined as a smoothed version of the WVD. By 

properly selecting the smoothing function we can create many 

variants of WVD.  

The spectrogram is an element of the Cohen's class since it is 

quadratic, covariant with time and frequency, and also 

preserves energy [1]. Spectrogram can be represented as a 

smoothed version of WVD by selecting the smoothing 

function as the „WVD of the window‟ function h. 

As mentioned before, WVD is an element of Cohen's class 

which can be understood by selecting the smoothing function 

as a double Dirac function. The interference terms in WVD 

can be effectively removed by selecting a suitable smoothing 

kernel. There are many variants possible for WVD, for 

example Smoothed WVD and Smoothed Pseudo WVD. Each 

of them is implemented by selecting suitable smoothing 

functions. 

The pseudo WVD is defined as the frequency smoothed 

version of the WVD according to the equation, 



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  ).d (t,).W(),( x  HtPWVDx
        (12) 

Here, 
)(  H

is the Fourier transform of smoothing 

window h(t). Here a compromise is done on many good 

features of WVD in order to smooth out the cross terms. 

Smoothed Pseudo WVD (SPWVD) is another variant in 

Cohen‟s class which is implemented by splitting up the 

smoothing function so as to provide an independent 

smoothing in time domain as well as frequency domain. The 

smoothing function can be represented as 

 

 )g(t).H(-  ) (t,              (13) 

2.6 Time-Frequency resolution 
The need of simultaneous time-frequency localizations can be 

understood using the below example. Figure 1 shows the 

Gaussian modulated linear FM signal with an analytic 

complex Gaussian noise with mean 0 and variance 1 added to 

it. The FFT spectrum of the signal is also seen in the figure. It 

is seen that the visibility of the signal spectrum is affected due 

to the presence of noise. In order to map the time and 

frequency information easily we can also look at the STFT 

plot of the signal in the same figure.  

 

Fig 1: STFT of the Noisy Signal 

In the Figure 1 the wide colored area in the contour plot of the 

signal‟s STFT represents the major signal component, and 

some noise components spread away from that. It can be 

noticed that the information we get from this plot helps us to 

map between the frequency content and the time content of 

the signal in the same plot. We can state which frequency 

component exist at which point of time. 

So it can be understood that the time-frequency representation 

helps us to easily study and understand the frequency contents 

of a signal at different time instants. Many researchers worked 

in this area have produced lots of useful results towards 
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improving and comparing the performance. For example, N. 

Zaric et al, did the implementation of a robust time-frequency 

distribution for analysis of signals in presence of noise. This 

included the development of an L-estimate STFT which uses 

a sorting operation [3]. Another work by G. Yu proposed a 

work on audio de-noising by using threshold in time-

frequency block [4]. Y. S. Wei and team researched on 

algorithms for eliminating interference between signals and 

thus helping multi-target signals in high frequency Radars [5]. 

Y.C.Jiang worked on generalized time–frequency 

distributions for multi-component polynomial phase signals. 

Three algorithms are proposed for removing the interference 

terms in multi-component signals through the generalized 

time–frequency distributions [6]. Yictor Sucic and team did 

another study on optimization algorithm for selecting 

quadratic Time-frequency Distributions in order to select the 

distribution which provides the best localization of signal 

components [7]. Daniel Mark Rosser researched on time-

frequency analysis of a carrier signal with additive white 

Gaussian noise in order to help in signal detection problems, 

which is addressed by time-frequency processing of the signal 
[8]. Boualem Boashash have extensively worked on time-

frequency signal analysis and processing proposing many 

algorithms [9]. Higher order time-frequency poly-spectra are 

studied by Alfred Hanssen and team [10]. Juan D Martinez-

Vargas et al have worked on time–frequency based algorithms 

for feature extraction of transient bio-signals [11]. In another 

research by Ervin Sejdic and associates, the time-frequency 

features are studied by considering the energy concentration 

as the parameter of analysis [12]. H. Zou et al had worked on 

parametric time-frequency representations using translated 

and dilated windowed exponential FM functions [13]. 

Hongxing Zou and team also worked on a similar area of 

time–frequency distributions for parametric TFRs using 

special class of transformation group called as „semi-affine‟ 

transformation group. This approach helps in achieving a 

good visibility for highly non-stationary signals [14]. Jun Jason 

Zhang et al proposed algorithms for time-frequency 

characterization of signals in order to help in receiver 

waveform design for shallow water environments [16]. 

Another research by B. Zhang and team discusses about the 

time-frequency distribution of Cohen‟s class with a compound 

kernel and its application in speech signal processing [17]. 

3. METHOD FOR ANALYSIS  

For the study, many types and combinations of signals are 

considered. As the first step, the representation of linear chirp 

signals with and without the presence of noise was studied. 

The WVD of the signal is calculated using the formula (5). In 

the second step transient signals are studied with and without 

the presence of noise. In the third step a LFM signal is 

undergone rectangular amplitude modulation and then, the 

STFT and Spectrogram are studied for different window 

functions. The Wavelet Transform and Scalogram are studied 

for „Altes Signal‟ in the next step. The time-frequency 

resolution is compared against that achieved by using WVD. 

To the end of the research, the cross-terms and time-frequency 

localizations achieved using 3 variants of Cohen‟s class are 

studied and compared.  

4. RESULTS 

The above methods are implemented in MATLAB using the 

functions provided by Time Frequency Toolbox. After 

applying the algorithms for quadratic representation of 

different signals, a set of results as described are obtained. 

The time and frequency information of a linear chirp signal 

are represented independently in Figure 2 and Figure 3. The 

WVD of the same signal is also shown in Figure 4. A straight 

line plot can be seen in the time-frequency domain. We can 

also note the good localization provided by WVD in this case. 

 

Fig 2:  Linear Chirp Signal 

 

Fig 3:  Signal Spectrum of the LFM Signal 

Figure 5 shows another analysis of the same signal in 

presence of noise. The spectrum of the noisy signal is not 

informative in terms of the actual and noise signal. But the 

WVD plot in Figure 5 shows a clear representation of the 

LFM signal even in the presence of noise. A line can be seen 

that represents the linear chirp clearly. 

4.1 STFT and Spectrogram 

A transient signal in presence of noise is generated and 

analyzed using STFT and Spectrogram as in Figure 8. The 

transient signal is generated by multiplying an amplitude 

modulation signal and a frequency modulation signal. Later 

and analytic complex Gaussian noise signal is added to it as in 

Figure 6 and Figure 7. The corresponding time and frequency 

diagrams show almost unidentifiable signal details which 

don‟t seem to be useful for a good analysis. On the other hand 

the spectrogram representation as in Figure 8 gives a good 

about the simultaneous time and frequency elements. The 

concentrated area in the middle of the plot represents the 

presence of the signal even in an environment of noise. 

In the next step, the performance of Spectrogram is analyzed 

using another input signal generated by a linear frequency 

modulation multiplied with a rectangular amplitude 

modulation. Different types of window functions were 
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selected for the calculation of STFT. When a dirac impulse 

was used as the window function a good time resolution and a 

poor frequency resolution was obtained.  

Fig 4: WVD of the LFM Signal 

 

Fig 5: WVD of the Signal with Noise 

 

Fig 6: Transient Signal with Noise 

 

Fig 7: Signal Spectrum 

 

Fig 8: Spectrogram of the transient Signal with Noise 

The plot for Spectrogram using a dirac impulse as the window 

function is as shown in Figure 9. 

Later a good frequency resolution and a poor time resolution 

was achieved by analyzing the same signal using STFT with a 

constant window as the window function. The plot for 

Spectrogram using a constant window function is as timing 

window is shown in Figure 10. 

Fig 9: Spectrogram of the Signal using a Dirac Window 
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Fig 10: Spectrogram of the Signal using a Constant 

Window Function 

In a next step of analysis, the effect of using a short window 

function and a long widow function for calculating 

spectrogram is demonstrated. Spectrogram of two linear chirp 

signals is implemented. A Gaussian function of length 11 is 

used to perform the windowing. We can notice a good time 

resolution with compromise on frequency resolution as in 

Figure 11. In a second study for the same signal, a long 

Gaussian window function of length 127 is used to calculate 

the Spectrogram. A good frequency resolution was observed 

with compromise on the time resolution as visible in the 

Figure 12. It can also be seen that the interference terms affect 

the readability of 2 chirp signals in both of the above cases. 

 

Fig 11: Spectrogram of 2 LFS Signals Using a Short 

Gaussian Window (Length 11) 

 

Fig 12: Spectrogram of 2 LFS Signals Using a Long 

Gaussian Window (Length 127) 

4.2 Scalogram and Wigner Ville 

Distribution 

The time-frequency localization of many signals is also 

compared by using Wavelet Transform and Wigner-Ville 

distribution. In the first study, the Scalogram (squared 

modulus of Continuous Wavelet Transform) is calculated 

using Morlet wavelet for an input signal containing 24 points 

of an “Altes Signal” of 256 samples. Later for the same 

signal, the Wigner Ville Distribution is also calculated. The 

input signal in time domain is as shown in Figure 13. Figure 

14 shows the Scalogram representation of the signal and 

Figure 15, the WVD. The contour plots of the Scalogram and 

WVD show a huge difference in the resolution. The WVD 

shows a narrower plot in comparison with the Scalogram, 

which clearly states the advantage of WVD. 

 

 

Fig 13: Altes Signal” of 256 samples 
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Fig 14: Scalogram of the Signal 

 

Fig 15: WVD of the Signal 

In a next example, the sum of two constant FM signals is 

studied with different frequencies, to compare the time-

frequency resolutions between scalogram and WVD variants 

in Cohen‟s class.  Two constant FM signals are considered 

with normalized frequencies 0.15 and 0.35 respectively. 

Along with the Scalogram analysis, the different variants of 

Cohen‟s Class are also applied in order to study the difference 

in localizations. This includes the WVD, Pseudo WVD and 

Smoothed Pseudo WVD. The scalogram of the signal as 

shown in Figure 16 does not give a good resolution as given 

by the WVD of the signal as in Figure 17. But in comparison 

to WVD, the cross terms are not present in Scalogram

 
Fig 16: Scalogram of the Signal  

Please note the interference terms present in the middle of two 

constant signals as in the plot of WVD in Figure 17. 

Now let us see the result of applying the Pseudo WVD by 

smoothing in frequency domain. As we can see in Figure 18, 

this doesn‟t really provide a reduction in cross-terms; instead 

it results in a reduction in frequency resolution. 

The Figure 19 shows the Smoothed Pseudo WVD of the same 

signal. The SPWVD does an independent smoothing in time 

as well as in frequency domain, which results in a reduction in 

cross terms also. When we compare the results of all the 

above three variants of Cohen‟s class, it can be understood 

that the Smoothed Pseudo WVD of the signal is a better one 

in terms of the time-frequency resolution and cross-term 

reduction. 

 

Fig 17: WVD of the Signal  

 

Fig 18:  Pseudo WVD of the Signal 

 

Fig 19: Smoothed Pseudo WVD of the Signal  
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In the next analysis, a combination of one linear FM signals 

with a constant FM signal of normalized frequency 0.35 is 

used. The scalogram representation as in Figure 20 doesn‟t 

create any cross-terms, but at the same time doesn‟t give us a 

good time-frequency resolution. On the other hand the WVD 

as in Figure 21, does give a good resolution but with presence 

of cross-terms. As before, the Pseudo WVD as in Figure 22 

neither improves the cross-terms nor the resolution. 

 

 

Fig 20:  Scalogram of the Signal  

 

Fig 21:  WVD of the Signal  

Here again, the Smoothed Pseudo WVD as in Figure 23 

presents a good compromise on the resolution against the 

cross-term reduction. 

 

 

Fig 22:  Pseudo WVD of the Signal  

 

Fig 23:  Smoothed Pseudo WVD of the Signal  

5. CONCLUSION 

From the above experiments and results, it can be understood 

that, the different variants of the Cohen‟s class exhibit 

variations in performance during signal analysis and 

detection. In case of multi-component signals, the 

mathematical interference terms are to be compromised 

against the signal resolution in time - frequency domain. If we 

are least bothered about the presence of cross terms, and are 

looking only for good time-frequency localization, WVD is 

found to be a good option. Among the different 

representations that are implemented using Wavelet 

Transform, Spectrogram, Wigner Ville, Pseudo Wigner Ville 

and Smoothed Pseudo Wigner Ville, it can be concluded that 

the Smoothed Pseudo WVD gives a good compromise on the 

signal resolution against the cross-terms. As a future work, 

many new and effective variants of WVD can be developed 

by developing suitable kernel functions. And further studies 

can be conducted in order to assess the improvements in the 

time-frequency localization. 
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